/   Home   /   Newsroom   /   Research News

Worms Contribute to Soil Ecology After Glacier Retreat

Sep 22, 2015     Email"> PrintText Size

Nematodes under a microscope, courtesy of snickclunk/flickr. 

The rock, gravel, sand and fine particles that are trapped under glaciers for millennia undergo major changes as glaciers retreat. Once they are exposed to the atmosphere, they are colonized by a variety of organisms and develop soils. They shift from having relatively few species of bacteria to developing more complex ecosystems.

Studying nematodes — or roundworms — communities in these soils can provide insight into the stages of ecosystem development as the worms respond differently to vegetative changes from grasslands to forested areas, a recent study from the Chinese Academy of Sciences found. The types of nematodes found in soil can also give insights about soil health, the authors found.

Though they may not look very impressive, nematodes are complex creatures. More than 25,000 species have been identified and have been known to adapt to a large variety of environments — from terrestrial to watery ecosystems, from salty to fresh habitats, and from northern to southern longitudes.

Collecting samples in glacier forelands (source: LTERNET) 

The Hailuogou Glacier on the southeastern Tibetan Plateau in China has retreated 1.8 kilometers in the 20th century, according to glaciologist Mauri Pelto. Because of the glacier’s rapid retreat, researchers from the Chinese Academy of Sciences were able to observe 120 years of plant regeneration in seven different stages. In phase one–the first 3 years after soil is initially exposed–mosses, small plants and grasses begin to grow. During phases two, three and four, or years 3 through 40, grasses eventually become replaced by shrubs and low trees. In phases five, six and seven, from 40 to 120 years after exposure, mature forests develop. Samples of these phases were taken from seven different sites and analysed for pH balance, phosphorus and nitrogen content. Nematodes were extracted from the samples.

The researchers found that while all these changes were occurring above ground, dynamic changes were also occurring beneath the surface. As the soils first developed, levels of soil phosphorous increased, and fungi-eating nematodes were dominant. In later stages, these nematodes were replaced with bacteria-eating nematodes; this shift is likely a response to the improvement of soil quality. 

Hailuogou Glacier, courtesy of Mykle Hoban/Flickr. 

But by the seventh phase, soil health began to decrease, and the researchers noticed the return of fungi-eating nematodes, species that survive well in poor soil conditions. Nutrient availability at this later phase began decreasing, suggesting that the ecosystem was entering a retrogressive phase.

"Further research should be conducted to determine the most efficient approach to integrate plant succession, nutrient availability, and soil bacterial and invertebrate community dynamics into models of ecosystem development and succession," the researchers concluded. "These models would be helpful for prediction and management of nutrient limitation during long-term soil development." It will be interesting to see whether the patterns of changing nematode populations in the glacier forelands in China are similar to those in other areas. It will also be of importance to framing climate change policy, since the expansion of vegetation in areas formerly covered by glaciers has the potential to sequester carbon dioxide. (Glacier Hub)

Attachment:

(Editor: CHEN Na)

Contact

Phone:
E-mail:

Related Articles

glacier;Heihe River Basin;irrigation;agricultural irrigation;climate change

Farmers and Glaciers in Northwest China

Jul 20, 2017

As a preliminary step to combat this looming crisis, a team of Chinese researchers set out to assess whether local farmers and herders were aware of glacial change and, if so, what their attitudes were toward state and local response strategies. The results, published las...

glacier;melt;global warming;Tibet

Purog Kangri Glacier Melts at Accelerated Rate in China's Tibet

Jul 11, 2017

With an area of about 400 square kilometers, the Purog Kangri glacier is melting at accelerated rate.

Contact Us

Copyright © 2002 - 2017 Chinese Academy of Sciences