/   Home   /   Newsroom   /   Research News   /   Chemistry

Scientists Develop High-safety and Scalable Planar Zn//MnO2 Micro-batteries

Jul 17, 2019     Email"> PrintText Size

A research group led by Prof. WU Zhongshuai from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences developed rechargeable aqueous planar Zn//MnO2 micro-batteries fabricated by low-cost, highly efficient, scalable screen printing technique.

 

Fabrication of printed Zn//MnO2 planar MBs. (Image by WANG Xiao and HOU Xiaocheng) 

The rapid development of the new-generation miniaturized and wearable electronics has stimulated demand for corresponding miniature energy storage devices. The planar micro-batteries, which overcome the shortcomings of the traditional stacked geometry, such as large volume, poor mechanical flexibility, and easy separation of the interface under bending state, are a promising candidate for flexible electronics.

In order to address the safety issues, scientists are developing high-safety aqueous electrolytes to replace flammable organic electrolytes, and constructing high-safety aqueous planar micro-batteries.

Due to the abundance of their electrode materials, Zn//MnO2 micro-batteries have attracted many attentions. However, there is still a lack of simple, efficient and large-scale microfabrication technique for fabricating aqueous planar Zn//MnO2 micro-batteries.

In this work, thixotropic ink was firstly configured with manganese dioxide, zinc powder and graphene as active materials, to produce the positive, negative electrodes and the current collector of Zn//MnO2 batteries, respectively. Then, multi-step screen printing method was adopted to realize the simple and low-cost preparation of planar Zn//MnO2 micro-batteries.

The researchers found that the prepared Zn//MnO2 batteries showed not only environmental friendliness and high safety but also exceptional durability, with a capacity of 83.9% for 1300 cycles at current density of 5 C, and good mechanical flexibility and performance uniformity.

In addition, the variety of printing substrates could meet the needs of different application scenarios. As screen printing is a mature technology in industry, this work would be highly promising for cost-efficient and large-scale preparation of planar Zn//MnO2 batteries, and offered new insights for the development of other planar flexible energy storage devices, and the research and application of graphene.

The above work was published in National Science Review. Meanwhile, it was highlighted by Prof. Sang-Young Lee's study entitled "Scalable and safer, printed Zn//MnO2 planar micro-batteries for smart electronics" in the same volume.

(Editor: LI Yuan)

Contact

WANG Yongjin

Dalian Institute of Chemical Physics

Phone: 86-411-84374221
E-mail: wangyj@dicp.ac.cn

Related Articles

LIMB;planar;energy storage

Scientists Develop Planar Lithium Ion Micro-Batteries

Jul 25, 2018

A research group led by WU Zhongshuai and BAO Xinhe from the Dalian Institute of Chemical Physics reported a prototype construction of all-solid-state planar LIMBs, with the characteristics of superior volumetric energy density, exceptional flexibility...

graphene;planar;lithium ion micro-batteries;high temperature;flexible

Flexible Micro-batteries Developed for Smart Wearable Electronics

Jul 19, 2018

Chinese scientists have developed flexible micro-batteries with high energy density and steady performance under extraordinary high-temperature. A research group at Dalian Institute of Chemical Physics of Chinese Academy of Sciences reported the develo...

graphene;planar;lithium ion micro-capacitors;high temperature;flexibility

China Develops Micro Flexible Capacitors with High Performance, Safety

Jul 03, 2018

Chinese researchers have developed new micro capacitors with high energy storage density and excellent thermal stability, according to Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

Contact Us

Copyright © 2002 - Chinese Academy of Sciences