/   Home   /   Newsroom   /   Research News

Ten Photons in a Tangle

Dec 27, 2016     Email"> PrintText Size

An entangled polarization state of ten photons sets a new record for multiphoton entanglement.  


Experiment setup for generating a ten-photon polarization-entangled GHZ state. /Photo from PAN Jianwei's team. 

Quantum computing requires multiple qubits entangled together. So far, only a handful of qubits have been coupled together successfully. A new experiment raises the bar with the entangling of ten photons, two more than the previous photon record. While still a ways off from what’s needed to make quantum computers competitive with classical ones, the entanglement of this many photons might be sufficient for certain quantum error correction codes and teleportation experiments.

Entangling photons typically relies on a nonlinear crystal, which converts a small fraction of incoming photons into a pair of entangled photons. In the case of the β-barium borate (BBO) crystal, the two photons have opposite polarizations—one being horizontal, the other vertical—and they are emitted in different directions. Researchers therefore use a variety of optical devices to collect the photon pair, which can then be entangled with pairs from other BBO crystals.

Previous multiphoton entanglement experiments had relatively low collection efficiencies of around 40%. Xi-Lin Wang from the University of Science and Technology of China and colleagues have developed a system with 70% collection efficiency. Rather than using a single BBO crystal to create pairs, they utilize two closely spaced BBO crystals separated by a polarization-rotating plate. This “sandwich” configuration generates entangled pairs of photons traveling in the same direction with the same polarization. The boost in efficiency from this output alignment means Wang and colleagues can achieve a high count rate with relatively low input power. To create ten-photon entanglement, the team placed five sandwich structures in a row and illuminated them all with a 0.57-W laser. They then used polarizing beam splitters to combine the photon pairs from each BBO crystal together.

This research is published in Physical Review Letters. (Physics)


(Editor: LIU Jia)

Related Articles

photon entanglement;entanglement distribution;quantum communication;satellite-based distribution;entangled photon pairs

Satellite-based Photon Entanglement Distributed over 1200 Kilometers

Jun 16, 2017

A team of Chinese scientists has realized the satellite-based distribution of entangled photon pairs over 1200 km. The photon pairs were demonstrated to be still entangled after travelling long distances and Bell’s inequality was shown to be violated under strict Einstei...

photon entanglement;entanglement distribution;quantum communication;satellite-based distribution;entangled photon pairs

In Landmark Experiment, Chinese Scientists Beam Back "Entangled" Photons from Space

Jun 16, 2017

Chinese scientists on Thursday reported a successful transmission of "entangled" photon pairs from space to ground stations separated by 1,200 km, a major technical breakthrough towards quantum communication over great distances. The study, published as a cover story by t...

Contact Us

Copyright © 2002 - Chinese Academy of Sciences