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A formula for the instantaneous phase of the cross-correlation function of two different modes using
the relationship between the horizontal wavenumber difference and frequency described by the
waveguide invariant is deduced in this paper. Based on the formula, a waveguide-invariant-based
warping operator suitable for both reflected and refracted modes in shallow water at low frequency
is presented, providing an effective tool to filter the cross-correlation function of modes from the
signal autocorrelation function. Using the phase of the filtered cross-correlation component in the
frequency domain, a passive source ranging method on a single hydrophone is proposed. Simulated
and experimental data using impulsive signals verify the validity of the derived warping operator
and source ranging method.

Keywords: Waveguide invariant; warping transform; passive source range estimation; autocorrela-
tion function; shallow water.

1. Introduction

In a shallow water waveguide, the low-frequency acoustic field can be viewed as a sum of
normal modes. Broadband acoustic propagation has a unique dispersive phenomenon due
to the waveguide characteristics of shallow water. The acoustic field is always dominated by
a set of normal modes, and the acoustic intensity created by a broadband source exhibits
striations when plotted versus range and frequency, because of the interference between dif-
ferent modes. These striations can be characterized by a scalar parameter, called waveguide
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invariant.1,2 As the waveguide invariant summarizes the acoustic dispersion in the waveg-
uide, it is used in various applications, such as source motion compensation,3 source range
estimation,4 reverberation mitigation,5 improvement of low-frequency spatial correlation,6

dedispersion,7 and time-frequency representations.8

A warping transform is a unitary transform, and was first introduced to signal analysis
by Baraniuk.9 If an expression for the signal instantaneous phase is known, the original
signal can be transformed to a single frequency signal using a corresponding warping oper-
ator through time-axis stretching or compression. Based on the expression for the mode’s
instantaneous phase for an ideal waveguide with perfect reflection boundaries, Bonnel et al.
presented the warping operator h(t) =

√
t2 + t2r to filter normal modes from the signal

received by a single hydrophone, where tr is the arrival time of a signal.10 This warping
operator has been applied to source range estimation,11,12 geo-acoustic inversion,13 bubble
pulse cancelation14 and obtaining the difference of the waveguide invariant between modes.15

Touzé et al.16 and Niu et al.17 build two different warping operators using a Pekeris waveg-
uide model, which have better filtering performance compared with the operator based on
an ideal model. Niu et al. also present the warping operators for nonisovelocity shallow water
waveguides.18 A frequency waveguide-invariant-based warping operator is also defined by
Bonnel et al.8 This operator can transform modes to impulsive signals, making it a useful
tool for modal filtering. One should note that all these operators are confined to impulsive
sources if the considered signal is the raw received signal (i.e. not the autocorrelation of
the received signal). It is required to deconvolve the source influence first for nonimpulsive
sources.

Compared to the instantaneous phase of a single mode, the cross-correlation of two
modes far from their cut-off frequencies has a similar instantaneous phase expression, i.e.
φmn(t) = 2πυmn

√
t2 − t2r in a Pekeris waveguide or iso-speed shallow water environment,

where υmn is the coupled characteristic frequency of modes m and n.19 So the warping oper-
ator h(t) =

√
t2 + t2r is also applicable to isolate the cross-correlation function of two modes

or extract characteristic frequencies of the waveguide from a signal autocorrelation function,
which can be used for source range estimation.19,20 Qi et al. deduced modes’ characteristic
frequencies in a range-dependent waveguide whose bottom bathymetry varies with range
using the adiabatic normal mode approximation, and extended this source ranging method
to a range-dependent shallow water waveguide.21

However, it should be noted that the conventional warping operator h(t) is valid for
a signal consisting of reflection dominated modes in shallow water. In other words, it is
suitable for the shallow water waveguides with a waveguide invariant approximately equal
to one. It implies that the horizontal wavenumber difference between two modes is inversely
proportional to the frequency. But in a waveguide with a thermocline or a surface channel,
the waveguide invariant varies over a range of values, especially for the refraction dominated
modes. The instantaneous phase of the cross-correlation function of modes m and n no
longer satisfies φmn(t) = 2πυmn

√
t2 − t2r, thus the performance of the warping operator

h(t) =
√
t2 + t2r will be significantly degraded. So a novel warping operator is necessary for

these waveguides. An expression of the instantaneous phase of the cross-correlation function,
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which can be deduced through an inverse Fourier transform of the phase expression in
the frequency domain, is the precondition for proposing an appropriate warping operator.
Although it is impossible to get an accurate analytic phase solution for these complex
environments, using the wavenumber difference described by the waveguide invariant, we
can obtain an approximate expression.

The remainder of this paper is organized as follows. In Sec. 2, a formula is derived
for the instantaneous phase of the cross-correlation function of two modes, based on the
horizontal wavenumber difference described by the waveguide invariant. The corresponding
waveguide-invariant-based warping operator and its connection with the traditional operator
are presented. Section 3 describes one source ranging method using the phase of the filtered
cross-correlation function in the frequency domain. Section 4 presents the results using
simulated and experimental data. Finally, the conclusion is provided in Sec. 5.

2. Warping Operator Based on Waveguide Invariant

2.1. β-warping operator

Low-frequency acoustic propagation can be described by normal mode theory in shallow
water. Considering a broadband source emitting a signal in a range-independent waveguide,
the received pressure field is given by22

P (f) = S(f)
M∑

m=1

Am(f)ejkrm(f)r, (1)

where S(f) is source spectrum, krm(f) represents the modal horizontal wavenumber with
index m at frequency f , r is the range, M denotes the number of propagating modes, and
Am(f) is the amplitude. Am(f) = 1

ρ
√

8πr
ψm(zs)ψm(z) ejπ/4√

krmf
, where ψm(z) represents the

modal function of index m, zs and z are the source and receiver depth, respectively, and ρ
represents the water density at the source depth. The horizontal wavenumber is a function
of the index m and f as the modal propagation is dispersive.

The autocorrelation function of the received signal in the time domain is obtained as
the inverse Fourier transform of the power spectral density,

R(r, t) =
∫ ∞

−∞
|S(f)|2

(
M∑

m=1

|Am(f)|2ej2πft

+
M∑

n=1

M∑
m�=n

An(f)A∗
m(f)ej(krn(f)−krm(f))r+j2πft


 df, (2)

where ∗ denotes the complex conjugation operator. The first integral term is the sum of
all modes’ autocorrelation function, while the second integral term represents the cross-
correlation function of different modes. If M propagating modes exist, there are M !

(M−2)!2!

combinations of two different modes.
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In an actual shallow water waveguide, it is impossible to get an accurate analytic expres-
sion for the wavenumber difference as a function of sound speed, bottom parameters, and
frequency. However, the mode wavenumber difference and the frequency satisfy the following
power law relationship,23,24

∆kmn(f) = krn(f) − krm(f) = −γnmf
− 1

β , (3)

where γnm is a constant which depends on the mode number (γnm can be calculated by
curve fitting when wavenumber differences at different frequencies are available), and β is
the waveguide invariant. One should note that the waveguide invariant is only invariant
within a mode group and frequency interval,22 Rouseff et al. define the local invariant in
terms of the phase velocity νm and the group velocity µm as25

βmn = −
1
νm

− 1
νn

1
µm

− 1
µn

. (4)

For one pair of modes with βmn > 0, the lower mode has a higher group velocity and
arrives at the receiver first, while the higher mode propagates faster in the case of βmn < 0.
Only considering the right-side of the waveform of the symmetrical autocorrelation function
R(r, t) from the peak and ignoring the mode’s autocorrelation component, the sum of the
cross-correlation functions of two different modes is given by

R2(r, t) =




M∑
n=1

M∑
m>n

∫ ∞

−∞
|S(f)|2A∗

m(f)An(f)ej∆kmn(f)r+j2πftdf if βmn > 0

M∑
n=1

M∑
m>n

∫ ∞

−∞
|S(f)|2Am(f)A∗

n(f)e−j∆kmn(f)r+j2πftdf if βmn < 0

. (5)

Now, we focus on the case of βmn > 0. Let

ϕmn(r, f) = ∆kmn(f)r (6)

and

Bmn(f) = |S(f)|2A∗
m(f)An(f). (7)

It is convenient to recast Eq. (5) in the following abbreviated form,

R2(r, t) =
M∑

n=1

M∑
m>n

∫ ∞

−∞
Bmn(f)ej(ϕmn(r,f)+2πft)df. (8)

For flat spectrum sources with |S(f)| slowly changing with f , the amplitude of the integral
term is considered to be a slowly varying function of frequency compared to the phase
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dependence. Applying the method of stationary phase26 to approximate this integral yields

R2(r, t) ≈
M∑

n=1

M∑
m>n

Bmn(fmns)

√
2π

ϕ′′
mn(r, fmns)

ej
π
4
sgn(ϕ′′

mn(r,fmns))ej(ϕmn(r,fmns)+2πfmnst), (9)

where ′′ denotes second derivative in frequency, sgn is the signum function, and fmns are
the stationary phase points obtained by solving

∂ϕmn(r, f)
∂f

+ 2πt = 0. (10)

Acorrding to Eqs. (6) and (3), one can rewrite Eq. (10) as

2πt+
1
βmn

γnmf
− 1

βmn
−1r = 0. (11)

By solving the above equation, the stationary phase points can be expressed as

fmns(t) =
(
− r

2πβmn
γnm

) βmn
1+βmn

t
− βmn

1+βmn . (12)

Inserting Eq. (12) into Eq. (9) and ignoring ej
π
4
sgn(ϕ′′

mn(r,fmns)), the instantaneous phase of
the cross-correlation function of modes m and n can be expressed as

φmn(t) = ϕmn(r, fmns(t)) + 2πfmns(t)t = −rγnm(fmns(t))
− 1

βmn + 2πfmns(t)t

= 2π
(
− r

2πβmn
γnm

) βmn
1+βmn

(1 + βmn)t
1

1+βmn . (13)

We therefore define a waveguide-invariant-based warping operator (β-warping operator)
according to Eq. (13),

h̃(t) = t1+βmn , (14)

and its corresponding inverse warping operator is given by

h̃−1(t) = t
1

1+βmn . (15)

Warping the time coordinate and re-sampling such that t̃ = t1+βmn transforms the modal
cross-correlation functions into a series of monotones at frequencies

ςmn(r) =
(
− r

2πβmn
γnm

) βmn
1+βmn

(1 + βmn). (16)

Following an identical derivation, we can obtain the corresponding frequency of the warped
cross-correlation function for the case of βmn < 0 as shown below:

ςmn(r) =
(
− r

2πβmn
γmn

) βmn
1+βmn

(1 + βmn) =
(

r

2πβmn
γnm

) βmn
1+βmn

(1 + βmn). (17)

1550003-5



January 24, 2015 10:9 WSPC/S0218-396X 130-JCA 1550003

Y. B. Qi et al.

In a real shallow water waveguide, there may exist both reflection dominated modes and
refraction dominated modes. Although the values of the waveguide invariant are different
for different pairs of modes, the received signal at a given range is usually dominated by a
group of modes that lie within a small range of β values. This group of modes determines
the value of the waveguide invariant we choose to apply with the β-warping transform.

2.2. Connection between β-warping operator and the traditional warping

operator

Now we consider the internal connection between the β-warping operator h̃(t) = t1+β

and the traditional operator h(t) =
√
t2 + t2r. When the waveguide invariant equals unity,

according to Eq. (13), the instantaneous phase of the cross-correlation function can be
expressed as

φmn(t) = 2π
√

− c

π
γnm

√
2tr

√
t, (18)

where tr = r/c, and c equals the average sound speed in water for nonisovelocity waveguides.
The autocorrelation function of the received signal is time shifted by tr to bring the peak of
the function to be time tr before being transformed by the traditional warping operator,19

and then the instantaneous phase becomes

φmn(t− tr) = 2π
√

− c

π
γnm

√
2tr

√
t− tr. (19)

For lower modes far from cut-off frequencies, the amplitude of their cross-correlation func-
tion decreases rapidly to zero as t increases. The time spread �t of their cross-correlation
function is much smaller compared with tr, so when tr ≤ t < tr + �t, φmn(t − tr) can be
approximated by

φmn(t− tr) ≈ 2π
√

− c

π
γnm

√
t+ tr

√
t− tr = 2π

√
− c

π
γnm

√
t2 − t2r. (20)

Warping the time coordinate and re-sampling such that t̃ =
√
t2 + t2r , the warped modal

cross-correlation function can be expressed as

Whφmn(t− tr) = 2π
√

− c

π
γnmt. (21)

So the traditional warping operator can transform the cross-correlation function to a signal
with a single frequency

υmn =
√

− c

π
γnm. (22)

From the above analysis, we can conclude that both the β-warping operator h̃(t) = t1+β

and the traditional operator h(t) =
√
t2 + t2r can transform the cross-correlation function

to a monotone frequency when the waveguide invariant approximately equals unity. One
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should note that the cross-correlation function should be time shifted by tr before being
transformed by the traditional warping operator. Otherwise, only the β-warping operator is
suitable. Comparing the traditional warping operator and the β-warping operator, we can
also find that the former uses the source range as a parameter (while it is unnecessary to
know the real source range, in a practical scenario one can assume a range to apply the
transformation when the real source range is unknown19) and the frequency of the warped
cross-correlation function is invariant, independent of source range. This characteristic is
used for source range estimation by Zhou et al.19,20 Since the β-warping operator proposed
in this paper does not need the source range, the cross-correlation function filtering can be
performed without knowledge of source position. Application of the filtered cross-correlation
in source ranging will be discussed in the next section.

3. Source Range Estimation

From the previous analysis, we can see that the warping transform provides an effective
method to separate the cross-correlation function of modes from the signal autocorrelation
function. It is worth mentioning that as long as the source spectrum is relatively flat to
make the stationary phase approximation in Eq. (9) tenable, the β-warping operator can be
used as the core of a filtering scheme to isolate the cross-correlation component by following
the steps below:

(1) Obtain the autocorrelation function R(r, t) of the received signal.
(2) Only consider the right-side waveform of the symmetrical autocorrelation function

R(r, t) from the peak and delete the mode’s autocorrelation component (the mode’s
autocorrelation component is concentrated near the peak compared with the cross-
correlation component, so zeroing the signal autocorrelation near the peak can delete
it to a large extent) to get the sum of different combinations of modal cross-correlation
functions, i.e. R2(r, t).

(3) Warp R2(r, t) using the β-warping operator h̃(t) = t1+β to obtain Wh̃R2(r, t).
(4) Isolate the warped cross-correlation function Wh̃Rmn(r, t) of modes m and n from

Wh̃R2(r, t) by using a narrow band filter.

(5) UnwarpWh̃Rmn(r, t) using the inverse warping operator h̃−1(t) = t
1

1+β to get the filtered
cross-correlation Rmn(r, t) in the original time domain.

The above steps are similar to the method in Bonnel’s paper,13 where the traditional
warping operator is used to filter modes from the received signal. Because the phase of the
cross-correlation function in the frequency domain contains source range information (see
Eq. (6)), the isolated modal cross-correlation function can be used for source ranging. There
are two challenges for obtaining range information from the measured phase of the modal
cross-correlation function. One is the sign difference of modal eigenfunctions at the source
and receiver depths, i.e. the sign of ψm(zs)ψm(z)ψn(zs)ψn(z), which can be circumvented
by squaring (not the absolute squaring) the filtered cross correlation function. The other
challenge is the ambiguity on the measured phase, since the phase is measured on the Fourier
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domain and is only known modulo 2π. In this paper, this challenge can be solved in the
broadband configuration. The measured phase of the squared cross-correlation function of
modes m and n at frequency f and reference frequency f0 can be written as

ϑmn(r, f) = 2∆kmn(f)r − 2lπ, (23a)

ϑmn(r, f0) = 2∆kmn(f0)r − 2lπ, (23b)

respectively, where l is an integer, so the difference of the measured phase at f and f0 is

∆ϑmn(r, f) = 2(∆kmn(f) − ∆kmn(f0))r. (24)

From Eq. (24), we can see that the measured phases at different frequencies of the squared
cross-correlation component changes linearly with wavenumber differences, so source range
estimation with a single receiver can be performed by linear regression of the measured
phases and wavenumber differences computed by the normal mode model.

Now we compare the difference of the warping transform of signal itself and the sig-
nal autocorrelation function. When the object to be transformed is the signal itself, the
warping operator is confined to impulsive sources, so Bonnel et al. deconvolve the source
influence first when using the warping transform to range bowhead whale sounds from a
single receiver.12 When the object to be transformed is the signal autocorrelation function,
the warping operator does not have this restriction as the phase of the source is deleted
automatically due to the autocorrelation processing (see Eq. (2)).

4. Application in Simulated and Experimental Data

4.1. Simulated data

In order to verify the above theoretical analysis, simulated signals in an ideal waveguide
and a n2-linear refracting waveguide computed with KRAKEN27 will be processed in this
subsection.

4.1.1. Ideal waveguide

The ideal waveguide is first analyzed with the following simulation parameters: sound speed
1500 m/s, water depth 100 m, source depth 100 m, and receiver depth 100 m. The frequency
of the emitted signal is from 100 Hz to 200 Hz. Figure 1(a) shows the spectrum of the warped
cross-correlation function of modes 2 and 1 at different ranges using the traditional warping
operator. The characteristic frequency υ21 is independent of source range. For comparison,
Fig. 1(b) shows the result of using the β-warping operator, where the dashed line represents
theoretical frequencies ς21(r) calculated by Eq. (16). Here, β = 1, m = 2 and n = 1 for

γ12 = −π f2
c2−f2

c1
c (In the ideal waveguide, krm(f) − krn(f) ≈ 2π

c (f − f2
cm
2f ) − 2π

c (f − f2
cn
2f ) =

−π f2
cm−f2

cn
c f−1, where fcm denotes the cut-off frequency of modem. Comparing with Eq. (3),

γ12 = −π f2
c2−f2

c1
c ).19 For lower modes far from cut-off in an ideal waveguide, the waveguide
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(a) (b)

Fig. 1. Spectrum of warped cross-correlation function of modes 2 and 1 at different ranges using traditional
warping and β-warping operators in the case of an ideal waveguide. (a) Traditional operator (dashed line
represents theoretical frequencies calculated by Eq. (22)); (b) β-warping operator using β = 1 (dashed line

represents theoretical frequencies calculated by Eq. (16) with γ12 = −π
f2

c2−f2
c1

c ).

invariant approximately equals unity, so both the traditional operator and the β-warping
operator can transform their cross-correlation function into a narrow band or line spectrum.

4.1.2. n2-linear refracting waveguide

Now we discuss the results of the signal autocorrelation function in an n2-linear refracting
waveguide. The water sound speed at the surface and bottom are 1500 m/s and 1560 m/s,
respectively. The water depth is 100 m and the bottom parameters of sound speed, density,
and attenuation are given by cb = 1600 m/s, ρb = 1.8 g/cm3 and αb = 0.1 dB/λ, respectively.
Both source and receiver are set at 15 m. The frequency of the emitted signal is from 100 Hz
to 200 Hz. In this scenario, all propagating modes are considered. The acoustic intensity ver-
sus range and frequency is presented in Fig. 2(a). The first three refracted modes dominate
the received sound field while the higher reflected modes are weakly excited and attenuate
quickly, resulting in the striations with a negative slope in Fig. 2(a). The waveguide invari-
ant computed by Eq. (4) for different pairs of modes is illustrated in Fig. 2(b). The value
of the waveguide invariant for these three pairs is almost the same, approximately equal to
−3 for frequencies far away from the modal cut-off. While in the low frequency band (from
100 Hz to 120 Hz), the value has a significant change except for the pair of modes 1 and 2.

Figure 3 presents the spectrum of the warped signal autocorrelation at different ranges
using traditional and β-warping operators(β = −3). From Fig. 3(a), we can see that it is
impossible to distinguish different pairs of cross-correlation components in the spectrum,
so the traditional warping operator is not suitable to isolate different pairs of modes from
the signal autocorrelation function. As for the β-warping operator, there are two obvious
curves, representing the cross-correlation of modes 1 and 2 and modes 1 and 3, respectively,
in Fig. 3(b), where the absolute values of theoretical frequencies of modes 1 and 2 and
modes 1 and 3 calculated by Eq. (17) are also presented as dashed lines (here, m = 2 and
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Fig. 2. Acoustic intensity and waveguide invariant for the n2-linear refracting waveguide. (a) Acoustic inten-
sity versus range and frequency; (b) Waveguide invariant value computed by Eq. (4) for different pairs of
modes.

(a) (b)

Fig. 3. Spectrum of warped signal autocorrelation at different ranges using traditional warping and β-warping
operators in the case of n2-linear refracting waveguide. (a) Traditional operator; (b) β-warping operator using
β = −3 (dashed lines represent theoretical frequencies of modes 1 and 2, and modes 1 and 3 at different
ranges calculated by Eq. (17) respectively with γ12 = −1.19 × 10−3, γ13 = −2.18 × 10−3).

n = 1 for γ12 = −1.19 × 10−3, and m = 3 and n = 1 for γ13 = −2.18 × 10−3, calculated by
curve fitting of wavenumber differences and Eq. (3)). It is easy to isolate these two pairs of
cross-correlation components from the signal autocorrelation using narrow-band filtering.
As the energy of the cross-correlation function of modes 2 and 3 are much smaller compared
with two other pairs, we can not see its corresponding curve in Fig. 3(b).

The spectrum of the warped autocorrelation function for a signal emitted at 35 km
range is presented in Fig. 4 as a black line. There are two main peaks corresponding to
the cross-correlation of modes 1 and 2, and modes 1 and 3. Incomplete deletion of the
modes’ autocorrelation function contributes to the raised spectrum before the biggest peak.
The cross-correlation filtering result is given in Fig. 5, where the 3 traces correspond to,
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Fig. 4. (Color online) Spectrums of the warped autocorrelation function for signal emitted at 35 km in
different background noisy environments using β-warping operator (β = −3) in the case of n2-linear refract-
ing waveguide. The signal autocorrelation before 0.04 s is set to zero to delete the modes’ autocorrelation
component.
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Fig. 5. Cross-correlation filtering result in the case of n2-linear refracting waveguide. Three traces correspond
to, from top to bottom, signal autocorrelation, filtered cross-correlation of modes 1 and 2, filtered cross-
correlation of modes 1 and 3, respectively.

from top to bottom, signal autocorrelation, filtered cross-correlation of modes 1 and 2, and
filtered cross-correlation of modes 1 and 3, respectively. Source ranging results using the
phase of the filtered cross-correlation function in the frequency domain are illustrated in
Fig. 6. The linear regression result of modes 1 and 2 is 34.95 km with 0.03 km uncertainty
at the 95% confidence level. There are two reasons which contribute to the error. One is
the incomplete deletion of the modes’ autocorrelation component. The other reason is the
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Fig. 6. Source ranging results by linear regression between the measured phases of the filtered cross-
correlation function and wavenumber differences computed by the normal mode model. (a) Modes 1 and 2;
(b) Modes 1 and 3.

imperfect performance of the square window filter to isolate the cross-correlation component.
The ranging result is acceptable in spite of the small error.

As for the pair of modes 1 and 3, we can see that the phase of the filtered cross-
correlation function does not change linearly with wavenumber difference in the frequency
band from 100 Hz to 120 Hz (gray points in Fig. 6(b)). The significant variation of the waveg-
uide invariant for modes 1 and 3 results in the performance of the β-warping operator being
nonlinear. However, the phase of the filtered cross-correlation function changes linearly with
wavenumber difference in frequency band from 120 Hz to 200 Hz, and the source ranging
result using this frequency band is still acceptable. From the discussion above, we conclude
that β-warping operator works well in the frequency band where there is no large varia-
tion of the value of the waveguide invariant, such as for frequencies far away from modal
cut-off.

To demonstrate that the filtering procedure and source ranging method can be effective
in an experimental context, the β-warping operator is applied to synthetic data in the
presence of white Gaussian noise. The spectrums of the warped autocorrelation function in
different background noisy environments are given in Fig. 4. In this paper, the Signal-to-
Noise Ratio (SNR) is computed over the time window of the impulsive signal with the same
frequency band. When SNR equals 7 dB, there are still two obvious peaks in the spectrum.
The source ranging result of modes 1 and 2 is 34.84 km with 0.18 km uncertainty at the 95%
confidence level, while it is 35.23 km with 0.31 km uncertainty for modes 1 and 3.

In a real experimental configuration, it is hard to get an accurate waveguide invariant
value. So the performance of the β-warping operator with a small waveguide invariant error
is discussed below. Figure 7 illustrates the spectrum of the warped autocorrelation function
for a signal emitted at 35 km using the β-warping operator with β = −4. Although the choice
of the waveguide invariant value affects the corresponding frequency of cross-correlation
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Fig. 7. Spectrum of the warped autocorrelation function for a signal emitted at 35 km using β-warping
operator (β = −4) in the case of an n2-linear refracting waveguide.
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Fig. 8. Source ranging result by linear regression between the measured phases of the filtered cross-correlation
function of modes 1 and 2 using the β-warping operator (β = −4) and wavenumber differences computed
by a normal mode model.

function of modes, the characteristics of the warped spectrum remain unchanged, still con-
taining two obvious peaks. The source ranging result using the filtered cross-correlation
function of modes 1 and 2 is also shown in Fig. 8. The above simulation results verify the
robustness of β-warping operator.

4.2. Experimental data

This subsection presents the results for one signal received in the sound propagation mea-
surement experiment in the north Yellow Sea on December 19 to 20, 2011. Explosive charges
[38-g charges of trinitrotoluene (TNT)] were used as the sources. The source depth was 25 m
below the sea surface. The bathymetry was almost flat between the source and receiver, the
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Fig. 9. Normalized waveform of the signal emitted at 25.2 km range.

mean water depth was 73 m with about 3 m variability. Sound speed in the water was almost
constant, with a value of 1480 m/s. The received signals were recorded by a 32-element,
300 m-length horizontal array.

Figure 9 shows the normalized waveform of the signal recorded by the first hydrophone
after band-pass filtering from 60 Hz to 200 Hz. The source range recorded by the Global
Position System (GPS) was 25.2 km. After zeroing different lengths of the signal’s auto-
correlation function to delete the modes’ autocorrelation component, the spectrums of
the warped signal’s autocorrelation function using the β-warping operator (β = 1) are
illustrated in Fig. 10, where τ represents the length of the zeroed signal’s autocorrelation
function. As shown in the figure, there are three main peaks from 50 Hz to 200 Hz for
these three spectrums, corresponding to the cross-correlation of modes 1 and 2, modes 2
and 3, and modes 1 and 3. The spectrum of τ = 0.3 has the clearest structure due to
little remaining of the modes’ autocorrelation component, while incomplete deletion of the
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Fig. 10. (Color online) Spectrums of the warped autocorrelation function of the experimental signal emitted
at 25.2 km range. τ represents the length of the zeroed signal’s autocorrelation function.
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(a) (b)

Fig. 11. (Color online) Spectrograms of the signal autocorrelation function and the warped signal autocor-
relation function. (a) Signal autocorrelation function; (b) Warped signal autocorrelation function.

modes’ autocorrelation component causes the fluctuation in the two other spectrums. So
τ = 0.3 is considered in the subsequent analysis.

The spectrogram of the autocorrelation function of the signal is presented in Fig. 11(a).
As shown in the figure, the cross-correlation of two modes has the similar dispersion char-
acteristics as the mode itself. In comparison, Fig. 11(b) illustrates the spectrogram of the
warped autocorrelation function. It shows that the modal cross-correlation components are
approximately transformed to monotone frequencies and they have become perfectly sepa-
rated from each other. The cross-correlation filtering result is given in Fig. 12, where the
4 traces are, from top to bottom, the signal’s autocorrelation, filtered cross-correlation of
modes 1 and 2, filtered cross-correlation of modes 2 and 3, and filtered cross-correlation of
modes 1 and 3, respectively.
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Fig. 12. Cross-correlation filtering result of the experimental signal emitted at 25.2 km range. Four traces
correspond to, from top to bottom, signal autocorrelation, filtered cross-correlation of modes 1 and 2, filtered
cross-correlation of modes 2 and 3, and filtered cross-correlation of modes 1 and 3, respectively. The signal
autocorrelation before 0.3 s is set to zero to delete the modes’ autocorrelation component.
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Table 1. Sediment parameters and source ranging results by linear regression.

Estimated range

Sound Speed Density Attenuation Modes 1 and 2 Modes 2 and 3 Modes 1 and 3

Sediment Type (m/s) (g/cm3) (dB/m/kHz) (km) (km) (km)

Silt clay 1580 1.58 0.11 26.26 ± 0.13 24.93 ± 0.26 24.65 ± 0.21
Silt sand 1670 1.81 0.69 24.56 ± 0.09 22.32 ± 0.13 22.41 ± 0.11
Fine sand 1750 1.95 0.51 24.01 ± 0.08 21.71 ± 0.11 21.83 ± 0.10
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Fig. 13. Source ranging result of the experimental signal by linear regression between the measured phases of
the filtered cross-correlation function of modes 1 and 2 and wavenumber differences for the silt sand sediment
computed by a normal mode model.

As we do not have detailed information about the sea bottom, three different sediments
(silt clay, silt sand and fine sand) are considered in this paper. Sediment parameters and
estimated source ranges using different modal combinations are given in Table 1. Besides,
Fig. 13 illustrates the linear regression result of the filtered cross-correlation function of
modes 1 and 2 for the silt sand sediment. As shown in Table 1, for the same sediment,
each modal combination has different estimated ranges. But this difference is acceptable
compared with the source range. The estimated ranges of silt clay are the largest as their
modal horizontal wavenumber differences are the smallest compared with other sediments
(see Fig. 14). The mean estimated ranges of silt clay, silt sand and fine sand are 25.28 km,
23.10 km and 22.52 km, respectively. Source ranging results of all the signals received in the
experiment using the modal horizontal wavenumber of the silt clay are illustrated in Fig. 15.
All the autocorrelation functions before 0.3 s are set to zero to delete the modes’ autocorre-
lation components. The relative error between the estimated range and the actual value is
basically less than 12%, as shown in Fig. 15(b). The mean relative error is about 4%. The
above results verify that the β-warping operator performs adequately in this experimental
scenario.
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Fig. 15. Source ranging results of all the signals received in the experiment. (a) Comparison of the estimated
range and the GPS range; (b) Relative error between the estimated range and the actual value.

5. Summary

The warping transform provides an effective method to isolate the cross-correlation func-
tion of modes or extract the characteristic frequencies of the waveguide from the signal
autocorrelation function in shallow water at low frequency. The traditional warping opera-
tor is confined to a shallow water environment with the waveguide invariant approximately
equal to unity. This paper presents a waveguide-invariant-based warping operator with
a wider range of applications. To obtain the warping operator, the instantaneous phase
expression of the cross-correlation function of two normal modes is also derived based on
the wavenumber difference described by the waveguide invariant. The phase of the filtered
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cross-correlation in the frequency domain contains source range information, so using the
phase information and wavenumber difference calculated by KRAKEN, single hydrophone
passive source ranging is realized on the simulated data of an n2-linear refracting waveg-
uide and with experimental data. As this paper mainly focuses on the physical meaning of
the β-warping operator and its potential use for source ranging, only the impulsive source
is considered. Further research and more endeavors are needed in the future engineering
applications.
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